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Using satellite multispectral imagery for
damage mapping of armyworm (Spodoptera
frugiperda) in maize at a regional scale
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Abstract

BACKGROUND: Armyworm, a destructive insect for maize, has caused a wide range of damage in both China and the United
States in recent years. To obtain the spatial distribution of the damage area, and to assess the damage severity, a fast and
accurate loss assessment method is of great importance for effective administration. The objectives of this study were to
determine suitable spectral features for armyworm detection and to develop a mapping method at a regional scale on the basis
of satellite remote sensing image data.

RESULTS: Armyworm infestation can cause a significant change in the plant’s leaf area index, which serves as a basis for
infestation monitoring. Among the number of vegetation indices that were examined for their sensitivity to insect damage, the
modified soil-adjusted vegetation index was identified as the optimal vegetation index for detecting armyworm. A univariate
model relying on two-date satellite images significantly outperformed a multivariate model, with the overall accuracy increased
from 0.50 to 0.79.

CONCLUSION: A mapping method for monitoring armyworm infestation at a regional scale has been developed, based on a
univariate model and two-date multispectral satellite images. The successful application of this method in a typical armyworm
outbreak event in Tangshan, Hebei Province, China, demonstrated the feasibility of the method and its promising potential for
implementation in practice.
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1 INTRODUCTION

Currently, to prevent damage by pests such as insects, weeds
and plant pathogens to crops, a large amount of pesticide is
applied worldwide each year. However, the loss of crops because
of insects has still increased significantly during the last 50 years."2
The armyworm (Spodoptera frugiperda) is an occasional insect
that endangers maize crops in summer in northern China. The
armyworm is the caterpillar life stage of a moth, which is regarded
as a pest to maize. As its name suggests, the armyworm tends
to infest maize plants in one field until the crops are exhaustecl. |
Then, the entire ‘army’ will move to another field to feed. In the * Correspondence to: Chunjiang Zhao, Beijing Research Centre for Information

caused by armyworm is of great importance for decision-making
in crop production. For example, such information can help the
agricultural administration determine whether to implement price
regulation or to provide financial subsidies in damaged regions.
Moreover, spatial distribution information of insect damage is also
vital to agricultural insurance companies.? In the event of the 2012
armyworm infestation in China, on account of the lack of an effi-
cient way to conduct field surveys over a large area, the number

event of an armyworm outbreak, their feeding habit will wreak
havoc in a large area of maize fields, which may result in a huge
yield loss. In the autumn of 2012, a nationwide prevalence of
armyworm was reported in both China and the United States. In
the United States, armyworm spread greatly in lllinois, Tennessee,
Kentucky and Montana and caused extensive damage (USDA 26th
Congressional District). Meanwhile, in the northern and eastern
plains of China, which are major maize-growing regions, severe
armyworm infestation was reported at about the same time as in
the United States.

Given the rapid development and spread of armyworm, an accu-
rate and rapid assessment of the extent and severity of damage
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of investigators available to insurance companies to carry out the
necessary surveys was insufficient, which resulted in many finan-
cial disputes.

In recent years, remote sensing technology has been developed
extensively. This development has made possible spatial-temporal
field observation over a large area. Spatially continuous informa-
tion from observations enables precision crop management
(PCM), which involves variable-rate applications for fertilisation
and fungicide spraying.*® It is known that plants under stress
will exhibit specific symptoms (e.g. reduction in the leaf area
index, destruction of pigments, variation in canopy morphology),
which can be manifested by certain responses in the plant leaf
visible/near-infrared (VIS-NIR) spectrum.®~° Based on spectral
measurements made at the leaf and canopy levels, a number of
spectral features (i.e. various vegetation indices and other forms of
feature) were developed/examined for detecting crop stresses.”®
Liu et al'® identified the red-edge (680-740 nm spectral region)
width as an indicator of water stress for wheat plant. Through
examination and comparison with several classic vegetation
indices for detecting the plant’s nitrogen and chlorophyll content,
Chen etal." proposed a novel index called the double-peak
canopy nitrogen index, which is more sensitive to nitrogen defi-
ciency in plants. For plant pests and diseases, a number of studies
have been conducted that have resulted in a set of vegetation
indices (e.g. the normalised difference vegetation index, the pho-
tochemical reflectance index, the anthocyanin reflectance index)
for detecting yellow rust, powdery mildew, aphid in wheat,'~'>
late blight in tomato, leaf blight disease, brown planthopper and
leaffolder in rice,'®~'° spider mite in cotton and several other
types of disease/pest.®2°2! |n addition, based on the identified
spectral features, the capability of airborne and satellite remote
sensing images in mapping diseases/pests has been evaluated.
Huang et al.?? used hyperspectral airborne images for mapping
yellow rust in winter wheat.?? In their study, a satisfactory accuracy
was reached (R?=0.91). Apart from hyperspectral imagery, the
potential of multispectral imagery in mapping crop diseases/pests
was also evident. Qin and Zhang?® applied an airborne multispec-
tral image to map the damage caused by rice sheath blight. A
reasonable correlation coefficient (0.62) between image-based
vegetation indices and disease severity suggested that the spatial
trend of disease severity could be generated by multispectral
remote sensing. Franke and Menz?* successfully monitored leaf
rust and powdery mildew in winter wheat with a high-resolution
satellite image (Quickbird). In mapping cotton root rot, Yang'®
compared the performance of multispectral and hyperspectral
images. The results suggested that both forms of data produced
approximately equal mapping accuracy, which thus encouraged
multispectral-data-based applications with a lower cost and a
higher availability.” As an example for such application cases,
Chen etal?® successfully detected take-all disease in winter
wheat with a moderate-resolution satellite multispectral image
(Landsat 5 TM).

Research progress and practical applications of remote sens-
ing in agriculture, as reviewed above, motivated us to attempt to
map the extent and severity of armyworm damage with satellite
multispectral data. Given the fact that armyworm infestation usu-
ally occurs at a relatively large spatial scale, images acquired by
the environment and disaster reduction small satellite (HJ-CCD),
a satellite remote sensing system launched by China in 2008 for
land resource observation, were used in this study. The data have
a 30 m spatial resolution with four bands in blue, green, red and
NIR, a broad imaging swath (360 km) and a short revisit frequency

Table 1. Parameters and information of HICCD images
Category Items Information
Parameters of Sensor ccb
sensors Platform HJ-1A/B satellites
Spatial resolution (m) 30
Spectral range (nm):
Band 1 430-520
Band 2 520-600
Band 3 630-690
Band 4 760-900
Image swath (km) 360
Revisit time (days) 4
Acquisition Date 16 July 13 August
information Scene ID 832675 853839
of scenes Path (P) and row (R) 454/68 454/68

(<4 days) (Table 1). In the summer of 2012, a serious armyworm
outbreak provided a good opportunity to examine the capability
of HJ-CCD images in mapping the insect damage. The objectives
of this study were (1) to identify suitable spectral features specifi-
cally for detecting armyworm infestation, (2) to develop a mapping
method at a regional scale for monitoring the spatial distribution
of armyworm using two-date satellite remote sensing image data
and (3) to assess the performance of the developed method with
comprehensive ground survey data.

2 METHODS

2.1 Study area and the armyworm attack event

A site suffering an attack of armyworms in the summer of 2012 was
selected as the study area for this study. The site, with a total area of
over 3000 km?, was located in the northern part of the North China
Plain (39.75° N, 118.19° E), characterised by flat terrain (average
elevation around 40 m). The study area was composed of three
regions: Tangshan City, Fengrun County and Luan County (Fig. 1).
In the study area, maize is a major crop that is planted in summer
from late June to late September in a year. Armyworm outbreaks
are always related to weather conditions and the generation
time of the pest. However, given that the emergence timing
of moths and the timing of favourable weather conditions for
armyworm are highly variable, it is very challenging to forecast
an outbreak precisely. In the summer of 2012, a significant rainfall
event was coincident with the emergence of third-instar larvae of
armyworm in several places in northern China, which thus led to
a severe outbreak of armyworm across the maize-planted areas in
northern China. According to weather records made from a total
of 14 weather stations around the study area, over 220 mm of
continuous rain fell from 21 July to 5 August 2012 (Fig. 2), which
thus formed favourable weather conditions for armyworm (i.e. cool
and wet conditions). With a significant increase in the number
of eggs laid by the second-generation moth, a severe armyworm
infestation occurred on 6-10 August, according to records from
the local Plant Protection Agency.

2.2 Field investigation

In this study area, a total of 69 plots were randomly selected
and surveyed for damage severity of armyworm in August 2012,
with 41 plots for model calibration and the remaining 28 plots
for validation (Fig. 1). The sampling design was according to the
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Figure 1. A map of survey points in the study area in Hebei Province, China.

North America Weed Management Association (NAWMA) map-
ping standard.?® To relate the plots to corresponding image pix-
els, a continuous maize planting area covering a circle of 20 m
radius was investigated. Within each plot, three transects from the
plot’s central point to its perimeter at 30° N, 150° N and 270° N
were surveyed (Fig. 3). Along each transect, a total of 20 maize
plants were randomly selected for inspection. To assess the infesta-
tion status and damage severity for each plot, a semi-quantitative
method was applied in the study. Each plot needed to be assigned
to one of three severity classes, including healthy, slightly dam-
aged and severely damaged. The healthy class indicated that the
plot had not been infested or that total leaf damage had occurred
on less than 5% of the surveyed plants. For damaged plots, as the
three-ear leaves are of significant importance to the photosyn-
thesis of maize plants,?” the outcome caused by armyworm was
mainly dependent on whether the three-ear leaves had been dam-
aged. Therefore, the slightly damaged class was defined as less
than 30% damage to three-ear leaves, and the severely damaged
class as over 30% damage to three-ear leaves (Fig. 4).28

Among the biophysical parameters, the most significant dam-
age by armyworms is to cause a reduction in leaf area index (LAI)
and biomass.?® Moreover, the chlorophyll content (Chl) was also
reported to have a certain correlation with insect damage.>® Within

our surveyed plots, 27 plots were selected to measure both LAland
Chl. LAl measurements per transect were made using a LAI-2000
plant canopy analyser (LI-COR, Lincoln, NE) in three 1 x 1 m sub-
plots, with ten repeats. For Chl measurement, a SPAD chloro-
phyll meter (Konika Minolta, Osaka, Japan) was used to measure
three-ear leaves. In each subplot, three maize plants were ran-
domly measured, with five repeats. All measurements for both
parameters were firstly averaged at a subplot level and then aver-
aged to represent the entire plot.

2.3 HJ-CCD data and preprocessing

For this study, two cloud-free HJ-CCD scenes were acquired before
(16 July) and after (13 August) the outbreak of armyworm in the
study area. The HJ-CCD images were preprocessed with radio-
metric calibration, atmospheric correction and geometric correc-
tion. The calibration coefficients of HJ-CCD were acquired from
the China Centre for Resources Satellite Data and Application
(CRESDA) in Beijing, China. The calibrated data were then pro-
cessed for atmospheric correction with the algorithm provided by
Liang et al.!, which was used to estimate the spatial distribution
of atmospheric aerosols and retrieved surface reflectance under
general atmospheric and surface conditions. The original HJ-CCD
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Figure 2. Temporal dynamics of meteorological factors during July and August 2012.
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Figure 3. A demonstration of the field sampling method.

images had a systematic geometric correction only. To facilitate
change detection analysis, both images on different dates were
coregistrated against a historical Landsat ETM+ image with pre-
cise geometric correction. According to over 80 ground tie-points
selected for the geometric correction, the resulting root mean
square error for both images was less than 0.5 pixels.

In the study area, apart from maize, rice and peanuts were
planted synchronously. Given that the spectral divergences
among different crops are always greater than those between
healthy and insect-infested areas inside a crop field, prior to map-
ping the armyworm, a supervised classification was implemented
to produce a mask layer of maize.3? As the visual difference among
maize, rice and peanut could be clearly observed on the HJ-CCD
image acquired on 13 August, this image was used directly to
execute the classification. Firstly, the vegetated area was differen-
tiated from the non-vegetated area through a simple threshold
of the NIR band. Within the vegetated area, maize was the main
crop, which was planted together with a small portion of rice,
beans and some vegetables. To extract the maize area, a total of
102 points were visually identified from the HJ-CCD image as a
reference. With a maximum likelihood classifier (MLC), an overall

accuracy of 92% classification was achieved, which can satisfy
the accuracy requirement of subsequent damage mapping for
infestation analysis (Fig. 5).

2.4 Mapping armyworm-infested areas

A workflow of mapping armyworm-infested areas is displayed in
Fig. 6. Firstly, the HJ-CCD images that were acquired before and
after the armyworm infestation event were preprocessed by radio-
metric calibration and atmospheric and geometric corrections to
obtain the corresponding surface reflectance images. Then, with
an analysis of variance (ANOVA) to examine the sensitivities of sev-
eral candidate spectral features, a set of optimal spectral features
for insect damage mapping were selected. Within the maize area
extracted by supervised classification, the maize damage caused
by armyworm infestation was mapped using two strategies: a step-
wise threshold optimisation based on a single spectral feature,
and a maximum likelihood classification based on multiple spec-
tral features. The mapping accuracies by the two methods were
assessed and compared on the basis of field investigation data col-
lected in 2012.

2.4.1 Spectral features for mapping armyworm damage

Considering the possible biological impact of armyworm infesta-
tion, four classic vegetation indices (VIs) related to LAI, Chl and
canopy morphology variations were selected for mapping the
damage: the normalised difference vegetation index (NDVI); the
soil-adjusted vegetation index (SAVI); the triangular vegetation
Index (TVI); the renormalised difference vegetation index (RDVI).
Among them, the NDVI is the best-known and most widely used
VI for mapping the amount of green biomass in vegetation of low
to moderate density.3®> The RDVI modifies the NDVI to make the
index more suitable for low to high LAl values.>* The TVl accounts
for radiant energy absorption of chlorophyll,®> whereas the SAVI
is used to minimise soil influences on canopy spectra, which is
suitable for observing severely damaged fields with different pro-
portions of soil exposure.3 In addition, it is worth noting that
Haboudane et al.3®¢ made important modifications to TVl and SAVI,
resulting in two important new indices: modified SAVI (MSAVI) and
modified TVI (MTVI). The general idea behind these modifications
was to render the indices less sensitive to chlorophyll effects, more
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responsive to green LAl variations and more resistant to soil and
atmosphere effects. To conduct a systematic evaluation of spectral
features (band reflectance and VIs) for damage mapping, the four
original HJ-CCD bands (i.e. blue, green, red and NIR bands) plus all
six VIs described above were included. The characteristics, formu-
las and references®* 38 of all the Vs are given in Table 2.

Slightly damaged
WWN I

Severely damaged

1
H |
1 HJ-CCD HJ-CCD i
: 26 July 13 Aug !
! (before event) (after event) i
]
e - i
e Radiometric calibration
e Atmospheric correction
e Geometric correction
[ ieieteeintededebetelnintintntinininininininininiininiitn it
) 1
: :
E Reflectance image Reflectance image H
! 26 July 13 Aug i
i i
) 1
L e e e I- -------------------------- rl
Supervised
classiﬁcationl l Extraction
Extraction of maize planting Original reflectance and
area vegetation indices

Sensitivity analysis
of spectral features
(ANOVA)

v v
Damage mapping using a Damage mapping using
stepwise threshold maximum likelihood
optimisation classification
[ |
Model calibration
and validation

A

Field investigations of
damage degree

Figure 6. A workflow of armyworm damage mapping at a regional scale.

For these spectral features (SFs), we calculated the change in
magnitude from the 16 July image to the 13 Augustimage by using
normalisation quantification, which can be written as*

SF

change =

SF13 Aug
SF13 aug + SF16 u

- SF16 Jul

(M
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Table 2. A list of vegetation indices selected for this study

Vegetation index

Formula

Literature

0.5*2Ryr + 1 — [2Ryr + 1)? — 8*(Ryig — RR)I*°}

NDVI (Ruir — Rr)/(Rig + RR)

SAVI (14 L)*(Ryg — RR)/(Ryig + Rg +1); L=0.5
VI 0.5*[120*(Ryr — Rg) — 200%(Rg — Rg)]
RDVI (Ruir — Rr)/(Rnig + Rp)%

MSAVI

MTVI 1.5[1.2(Ryir—Rs)—2.5(Rr—Rg) ]

Rouse et al.33
Huete3’

Broge and Leblanc3®
Reujean and Breon3*
Qietal3®

Haboudane et al.36

\/(2RMR+1)2-(6RMR—5\/R—R)—0.5

(a) 4.0

3.5 1

3.0 1

2.5 1

2.0 1
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0.5 1

0.0 A
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(b) 70
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Figure 7. Means and standard deviations of LAl and SPAD (reflecting the Chl content) for healthy and armyworm-infested samples.

where SF,qe is the two-date SF change, and SFy3 5,4 and SFyg
are the SFs extracted from the images acquired before and after
the insect attack respectively.

2.4.2  Analysis of the sensitivity of biophysical parameters and SFs
to insect damage

To examine whether the measured LAl and Chl are sensitive to
insect damage, a standard ANOVA was applied. In addition, the
same analysis was also performed on the selected SFs to identify
those that were optimal for damage mapping. For significant
F-values, homogeneous subgroups were identified according to
Tukey’s test, with a significance level a =0.05. Only SFs achieving
significant difference in at least one pair of groups were retained
in subsequent analysis.

2.4.3 Insect damage mapping using a stepwise threshold
optimisation

To map insect damage with a single variable, stepwise threshold
optimisation was adopted for generating the cut-off values, to
avoid using a subjective cut. For this purpose, 100 evenly spaced
intervals were set within the data range (i.e. from minimum to max-
imum) for each variable. Using the validation data, the overall accu-
racy was calculated by traversing all intervals. The cut-off value
was defined as the point where the highest accuracy was reached.
Such stepwise-optimised thresholding was applied firstly to gen-
erate the cut-off value for separating healthy and slightly damaged
samples, and then to identify the cut-off value for differentiating
between slightly damaged and severely damaged samples. A sim-
ilar stepwise optimisation protocol demonstrated effectiveness in
vegetation-associated image classification applications.04!

2.4.4 Insect damage mapping using maximum likelihood
classification

In addition to mapping insect damage with single variables, a mul-
tivariate mapping method was also tested. Prior to the mapping

process, a cross-correlation check was performed on spectral fea-
tures that passed the sensitivity test (in Section 2.4.2) to assess
the dependency of variables. If any two variables had an R? value
of over 0.8, then one variable with lower discriminative capability
(according to the results of ANOVA) was abandoned, which thus
reduced the information redundancy among variables. In consid-
eration of both efficiency and accuracy of classification, a sim-
ple and standard algorithm, the maximum likelihood classification
(MLC), was used to produce insect damage maps.

2.5 Accuracy assessment

Mapping results were assessed against validation data. A num-
ber of accuracy indices were used, including overall accuracy, pro-
ducer’s accuracy, user’s accuracy and kappa coefficient.*?

3 RESULTS

3.1 Response of biophysical parameters and spectral
features to armyworm attack

The means and standard deviations of LAl and Chl at varying
damage levels according to the field measurement of biophysical
parameters are compared in Fig. 7. It was obvious that the LAl
tended to decrease with insect damage, whereas the change in
chlorophyll content was less significant. The results of ANOVA
also supported this observation. It was found that the LAl was
significantly different between severely damaged and the other
levels, whereas no statistical difference was found in chlorophyll
content between any of the classes.

The responses of the four original band reflectances and various
Vls to insect damage are illustrated in Fig. 8, where their means
and standard deviations at different damage levels are compared.
To show whether the temporal changes in spectral features have
higher sensitivity to insect infestation than single-date spectral
features, the responses of spectral features extracted from the
August 2013 image are also included in Fig. 8 for comparison.
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Figure 8. Means and standard deviations of image-based reflectance and Vis.
Table 3. Sensitivity of various imagery-based spectral features?based on ANOVA
Means of two dates Means on 13 August
Spectral features Healthy Slightly damaged Severely damaged Healthy Slightly damaged Severely damaged
Blue —0.0375a —0.0108a —0.0378a 0.0813a 0.0794a 0.0786a
Green —0.0699a —0.0525a —0.0583a 0.0889%a 0.0832a 0.0859a
Red —0.2666a —0.2271a —0.2214a 0.0592a 0.0601b 0.0621b
NIR —0.0511a —0.0890b —0.1330c 0.0523a 0.0457b 0.0441b
NDVI 0.0666a 0.0454ab 0.0283b 0.7950a 0.7669ab 0.7513b
SAVI 0.0308a —0.0045b —0.0391c 0.6399a 0.5847b 0.5655b
TVI 0.0086a —0.0416b —0.0961c 0.5806a 0.4946b 0.4737b
RDVI 0.0269a —0.0087b —0.0445c¢ 0.6062a 0.5515b 0.5333b
MSAVI 0.0441a 0.0028b —0.0378c 0.6719a 0.6070b 0.5831b
MTVI 0.0845a 0.0388b —0.0071c 0.6663a 0.5916b 0.5687b
@ For each spectral feature, means within a row followed by the same letters are not significantly different according to ANOVA and Tukey'’s test
(P> 0.05).

Generally, most band reflectances and VIs showed a certain
response to insect damage, except for the reflectance in the green
band on 13 August and the two-date reflectances in the blue
and green bands. The Vis showed a stronger response than the
original band reflectance. Moreover, among the various forms of
spectral feature, it should be noted that the two-date Vis exhib-
ited stronger sensitivity to insect damage. The results of ANOVA
provided a quantitative measure of the discriminative capability
of band reflectances and Vis (Table 3). Among single-date spectral
features, eight out of ten features showed significant difference
between classes. However, they could only differentiate between
healthy and damaged samples and were unable to discriminate
levels of insect infestation (i.e. slightly or severely damaged).
In contrast, all of the two-date spectral features except NDVI

showed significant differences among all groups, which indicated
that these spectral features were able not only to differentiate
between healthy and damaged samples but also to determine lev-
els of damage severity. To explore the degree of cross-correlation
among these spectral features, a correlation matrix summarising
the R? values between each pair of two-date insect-sensitive spec-
tral features is given in Table. 4. Based on the threshold of R = 0.8,
only three spectral features - NIR, NDVI and MSAVI - were
retained to construct a multivariate model for insect damage

mapping.

3.2 Mapping insect damage with two-date satellite imagery
Based on the proposed mapping protocol, damage maps for
maize armyworm were produced by each spectral feature using
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Table 4. Cross-correlation among insect-sensitive spectral features
R? NIR NDVI SAVI TVI RDVI MSAVI MTVI
NIR 1

NDVI 0.04 1

SAVI 0.57 0.62 1

TVI 0.87 0.28 0.87 1

RDVI 0.62 0.58 0.99 0.90 1

MSAVI  0.49 0.69 0.99 0.81 0.97 1

MTVI 0.43 0.71 0.95 0.78 0.93 0.97 1

a univariate model and by their combination using a multivari-
ate model (Figs 9 and 10). These damage maps for different
spectral features/combinations showed similar spatial patterns of
insect infestation, with relatively serious damage occurring in the
north-eastern part and at the southern edge of Fengrun County
and in the northern part of Luan County. Such a distribution pat-
tern is generally consistent with the pattern observed in the field.
Our field survey showed that insect infestation was heavier in the
north-eastern part of Fengrun County and in the northern part
of Luan County than in the remaining areas in the region. The
damage at the southern edge of Fengrun County was confirmed

Two-stage NIR

Two-stage SAVI

Two-stage RDVI

through telephone interviews with local farmers. To provide a
quantifiable result, the accuracies in mapping the armyworm with
two-date spectral features are summarised in Tables 5 and 6, as
well as the confusion matrices. For individual spectral features, the
overall accuracy ranged from 0.64 to 0.79, with MSAVI having the
highest accuracy. The multivariate model relying on a combination
of spectral features produced an overall accuracy of 0.50, which is
lower than the accuracy of all univariate model results. This might
suggest that insect damage could be effectively mapped in a sim-
pler and less expensive manner.

To examine whether mapping the insect damage with two-date
spectral change information has a significant benefit compared
with single-date mapping, the same univariate and multivariate
models were calibrated and validated on the basis of single-date
features (extracted from the 13 August image), which produced
singe-date damage maps for comparison. As shown in Fig. 11,
the identified damage area on the single-date damage maps is
significantly larger than that on the two-date damage maps. In
Tables 6 and Table 7, the large commission errors of the single-date
damage mapping results are significantly greater than those of
the two-date damage mapping results, which suggests that the
insect infestation is seriously overestimated by single-date spec-
tral features or their combination. This issue of the single-date
damage mapping protocol resulted in a significant reduction in

Two-stage NDVI

Two-stage TVI

Two-stage MSAVI

Two-stage MTVI

Figure 9. Mapping of armyworm damage based on two-date spectral features.
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Figure 10. Mapping of armyworm damage based on individual spectral features from a single-date image.

Table 5. Confusion matrices and classification accuracies produced by individual spectral features from two-date images

Reference

User’s Overall kappa

Predicted classes Healthy Slightly damaged Severely damaged Sum accuracy (%) accuracy (%) coefficient
NIR
Classed as healthy 9 5 0 14 64.29 0.68 0.50
Classed as slightly damaged 3 4 1 8 50.00
Classed as severely damaged 0 0 6 6 100.00
Sum 12 9 7 28
Producer’s accuracy (%) 75.00 44.44 85.71
NDVI
Classed as healthy 7 2 0 9 77.78 0.68 0.51
Classed as slightly damaged 5 7 2 14 50.00
Classed as severely damaged 0 0 5 5 100.00
Sum 12 9 7 28
Producer’s accuracy (%) 58.33 77.78 7143
SAVI
Classed as healthy 8 2 0 10 80.00 0.71 0.56
Classed as slightly damaged 4 7 2 13 53.85
Classed as severely damaged 0 0 5 5 100.00
Sum 12 9 7 28
Producer’s accuracy (%) 66.67 77.78 7143
TVI
Classed as healthy 6 1 0 7 85.71 0.64 0.47
Classed as slightly damaged 5 7 2 14 50.00
Classed as severely damaged 1 1 5 7 7143
Sum 12 9 7 28
Producer’s accuracy (%) 50.00 77.78 7143
RDVI
Classed as healthy 8 2 0 10 80.00 0.71 0.56
Classed as slightly damaged 4 7 2 13 53.85
Classed as severely damaged 0 0 5 5 100.00
Sum 12 9 7 28
Producer’s accuracy (%) 66.67 77.78 7143
MSAVI
Classed as healthy 10 2 2 14 7143 0.79 0.66
Classed as slightly damaged 2 7 0 77.78
Classed as severely damaged 0 0 5 5 100.00
Sum 12 9 7 28
Producer’s accuracy (%) 83.33 77.78 7143
MTVI
Classed as healthy 8 2 1 11 7273 0.71 0.56
Classed as slightly damaged 4 7 1 12 5833
Classed as severely damaged 0 0 5 5 100.00
Sum 12 9 7 28
Producer’s accuracy (%) 66.67 77.78 7143

Pest Manag Sci 2016; 72: 335-348 © 2015 Society of Chemical Industry wileyonlinelibrary.com/journal/ps
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Table 6. Confusion matrices and classification accuracies produced by multiple spectral features with the MLC method
Reference
kappa

Predicted classes Healthy  Slightly damaged  Severelydamaged  Sum  User's accuracy (%) Overall accuracy (%) coefficient
Single-date image (13 August)

Classed as healthy 2 0 1 3 66.67 0.39 0.11

Classed as slightly damaged 9 7 4 20 35.00

Classed as severely damaged 1 2 2 5 40.00

Sum 12 9 7 28

Producer’s accuracy (%) 16.67 77.78 28.57
[Two-date images

Classed as healthy 4 0 1 5 80.00 0.50 0.25

Classed as slightly damaged 8 8 4 20 40.00

Classed as severely damaged 0 1 2 3 66.67

Sum 12 9 7 28

Producer’s accuracy (%) 3333 88.89 28.57
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Figure 11. Results of armyworm damage mapping based on multiple spectral features.

mapping accuracy compared with the two-date damage map- 4 DISCUSSION

ping method, with the average overall accuracy (of the tested  |n the summer of 2012 in northern China, cool and wet weather
individual spectral features) decreasing from 0.70 to 0.52 for uni-  coincided with the propagation of armyworm, which thus
variate models. For multivariate models, a similar pattern of map-  accounted for a wide expansion of the armyworm population. In
ping accuracy is observed, with overall accuracy decreasing from  addition, the contiguous large maize-planted area also played a
0.50 to 0.39. key role in promoting the insect infestation by providing an ideal

______________________________________________________________________________________________________________________________________________________|
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Table 7. Confusion matrices and classification accuracies produced by individual spectral features from the single-date image (13 August)
Reference
kappa
Predicted classes Healthy  Slightly damaged  Severely damaged  Sum  User's accuracy (%) Overall accuracy (%) coefficient
NIR
Classed as healthy 5 2 2 9 55.56 0.46 0.18
Classed as slightly damaged 7 6 3 16 37.50
Classed as severely damaged 0 1 2 3 66.67
Sum 12 9 7 28
Producer’s accuracy (%) 41.67 66.67 28.57
NDVI
Classed as healthy 9 4 2 15 60.00 0.54 0.26
Classed as slightly damaged 3 4 3 10 40.00
Classed as severely damaged 0 1 2 3 66.67
Sum 12 9 7 28
Producer’s accuracy (%) 75.00 4444 28.57
SAVI
Classed as healthy 5 1 2 8 62.50 0.54 0.29
Classed as slightly damaged 7 7 2 16 43.75
Classed as severely damaged 0 1 3 4 75.00
Sum 12 9 7 28
Producer’s accuracy (%) 41.67 77.78 42.86
TVI
Classed as healthy 5 2 2 9 55.56 0.50 0.24
Classed as slightly damaged 7 6 2 15 40.00
Classed as severely damaged 0 1 3 4 75.00
Sum 12 9 7 28
Producer’s accuracy (%) 41.67 66.67 42.86
RDVI
Classed as healthy 5 1 2 8 62.50 0.54 0.29
Classed as slightly damaged 7 7 2 16 4375
Classed as severely damaged 0 1 3 4 75.00
Sum 12 9 7 28
Producer’s accuracy (%) 41.67 77.78 42.86
MSAVI
Classed as healthy 5 1 2 8 62.50 0.54 0.29
Classed as slightly damaged 7 7 2 16 43.75
Classed as severely damaged 0 1 3 4 75.00
Sum 12 9 7 28
Producer’s accuracy (%) 41.67 77.78 42.86
MTVI
Classed as healthy 5 1 2 8 62.50 0.50 0.24
Classed as slightly damaged 7 7 3 17 41.18
Classed as severely damaged 0 1 2 3 66.67
Sum 12 9 7 28
Producer’s accuracy (%) 41.67 77.78 28.57

habitat. In damage by armyworm to maize, the insect primarily
fed on foliage, which thereby resulted in a significant reduction in
leaf area and biomass. By comparison, dehydration and destruc-
tion of the pigmentary system by the insects were secondary.
Such damage characteristics explain the response patterns of LAI
and SPAD values in Fig. 7. Changes in biophysical parameters on
account of insect damage serve as a basis of the sensitivity of
spectral features. Among the four original band reflectances, the
NIR band showed a stronger sensitivity to insect damage than
the other three visible bands for both single-date and two-date
mapping, which was associated with variation in canopy multi-
scattering driven by change in LAL® Most of the Vis exhibiting

higher sensitivity to damage apply algebraic procedures based
on original bands, which enhance the spectral responses from
different aspects. It was also noted that all VIs contained an NIR
band, which thereby had the potential to be sensitive to LAl
variation and might explain their good performance in mapping
the armyworm.

In this study, compared with the maps produced with two-date
spectral features, the performance of single-date spectral features
suggested that the insect damage was not mapped well enough
by single-date remote sensing data (Tables 5 to 7). Compared
with two-date mapping results, the significantly larger commis-
sion error of single-date mapping implied that, apart from insect

Pest Manag Sci 2016; 72: 335-348
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Optimal mapping result
(with two-stage MSAVI)

gk Healthy plots (calibration)
op Slightly damaged plots (calibration)
ok Severely damaged plots (calibration)
A Healthy plots (validation)

/\ Slightly damaged plots (validation)
A Severely damaged plots (validation)
[ Healthy areas (forecast)

[ slightly damaged areas (forecast)
I Severely damaged areas (forecast)

Figure 12. Original images and mapping results of armyworm infestation in a subregion (based on the optimal two-date MSAVI).

damage, there were other factors leading to responses of the
same spectral features, which resulted in a dramatic expansion of
the ‘infested area’ (Figs 9 to 11). It is understandable that, within
a single-date image scene, the spectral features would not only
respond to insect damage but also vary according to phenolog-
ical differences (e.g. fields in southern parts grew a little earlier
than in the remaining areas), cultivar differences and variation
in plant vigour between fields.® The spectral change between
stages before and after the armyworm attack event helps to elim-
inate field anomalies other than the armyworm infestation, which
thereby leads to a sound improvement in accuracy compared with
single-date mapping results. Such a pattern confirmed that the
mapping protocol based on two-date images as proposed in this
study is reasonable and effective for mapping armyworm infesta-
tion. Among spectral features, MSAVI produced the highest accu-
racy. The modified SAVI is able not only to resist the influence of
soil background but also to respond to LAl dynamics in a wider
range than SAVI.3>36 Such a trait of the index makes it more suit-
able for monitoring the damaged fields with LAl varying from very
low (almost with only the plant stems left) to high. It was encour-
aging that the univariate model outperformed multivariate mod-
els in mapping the armyworm in this study. We assumed that the
mechanism of spectral response to insect destruction was rela-
tively simple and direct, which had a good linearity with a single
V1. However, in spite of the multiple variables in multivariate mod-
els providing abundant information, the information redundancy
issue might cause a reduction in model accuracy.

Apart from insect damage maps of the entire study area, a
subset of mapping results produced by optimal two-date MSAVI,
as well as original images at both stages, is shown in Fig. 12,
which allows a direct visual observation of spectral change and
corresponding damage severity. As the image-based estimation

of damage severity was highly consistent with our field observa-
tions (see Fig. 12 for scenes of the field survey), the effectiveness
of the method was confirmed. In contrast to manual interpreta-
tion, a semi-automatic delineation method as described in this
study helps to eliminate interpreter bias and can thus increase
the consistency and reliability of mapping between different
areas or dates.** More importantly, such a remote sensing
(RS)-based workflow provides a fast and effective way to extend
point observation to an entire region in a spatially continuous
manner, which would be a labour-saving mode in crop damage
monitoring. For the armyworm outbreak event in the summer of
2012 in Tangshan, our study results provided timely information
about the spatial distribution of infestation and damage severity
for the Plant Protection Agency of Hebei Province, China. The
information has greatly facilitated the agency’s strategic planning
and decision-making in crop production management.

In this study, although the two-date moderate-resolution
HJ-CCD satellite image data showed a sound performance in
mapping and determining severity of the armyworm infestation,
the accuracy was expected to be higher than 80%, as has been
achieved in crop pest mapping study cases with high-resolution
airborne or satellite images.?**>% There may be several reasons
for the moderate accuracy in the present study. Firstly, a mixed
pixel problem is inevitable for a moderate resolution image. In
spite of the comprehensive field survey strategy adopted in this
study (see Section 2.2), it is still impossible to eliminate completely
the influence of the mixed pixel problem. Secondly, the error from
coregistration between image scenes (i.e. images acquired on two
dates) will also bring uncertainty in subsequent change detection
processes. Further, as shown in the confusion matrices (Tables 4
to 6), the slightly damaged samples were significantly underesti-
mated (many of them were misclassified as healthy), which might
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be related to the feeding habit of armyworm. Given the fact that
the feeding of armyworm results in damage to maize foliage from
bottom to top, most leaves on the top of maize remain undamaged
for slightly damaged plants. In this case, such plants might have
a slight spectral change, thereby lacking a clear spectral signature
to be sensed. To solve the problem, it might be helpful to apply
multiangular remote sensing observations to reflect the change in
middle to lower layers of maize plants.*’ As this study presented an
RS-based workflow for mapping insect damage that had already
occurred, it would be more important to develop strategies for
damage prediction. In spite of methods driven by meteorological
data being mainstream for disease/insect prediction, it is believed
that the synergy between meteorological data and RS data on
damage prediction has a promising future.*® RS observations have
been proven to have great potential in obtaining information
about crop biophysical status and habitat characteristics (e.g.
vegetation coverage, leaf area index, biomass, soil water content,
land surface temperature, etc.) that are not reflected by meteoro-
logical observations. Therefore, it is recommended that advantage
be taken of the mutual complementary traits of meteorological
data and RS data, and that a synergetic scheme be developed for
predicting crop disease/insect damage at an early stage.

5 CONCLUSIONS

Monitoring of armyworm at a regional scale is of practical impor-
tance, given that the insect tends to develop quickly, but that
this development is difficult to forecast precisely. In this study,
a method for mapping armyworm damage based on multi-
spectral satellite remote sensing data has been developed and
tested, ensuring a systematic census of insect infestation over
a large area. Our results suggest that a combination of multi-
spectral moderate-resolution satellite imagery and an optimised
thresholding strategy is able to produce a reasonable insect
damage map with an overall accuracy of 0.79. Therefore, such a
method could provide an economic and efficient alternative to
conventional methods, which mainly depend on laborious field
investigations.

The potential application of mapping results of armyworm infes-
tation derived from remote sensing data facilitates loss assessment
for the agricultural insurance industry by using information on
the spatial distribution of insect damage. For example, mapping
results can be used for identifying suspected areas that require
intensive field surveys, allocating limited supplies (e.g. pesticides,
sprayers) and deploying experienced experts to direct prevention
operations. In the future, with high-resolution space-borne remote
sensing data becoming more available and less expensive, map-
ping results at a finer scale (e.g. parcel level) are expected further
to enhance operational capability. In this domain, more efforts and
studies are needed to improve the reliability and robustness of
mapping techniques.
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